Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
10531
Download
1139
from September 2014
 
©Journal of Sports Science and Medicine (2008) 07, 299 - 304

Case report
Force-Velocity, Impulse-Momentum Relationships: Implications for Efficacy of Purposefully Slow Resistance Training
Brian K. Schilling1, , Michael J. Falvo2, Loren Z.F. Chiu3
Author Information
1 Exercise Neuromechanics Laboratory, The University of Memphis, Memphis, USA
2 Locomotor Control Laboratory, Washington University School of Medicine, USA
3 Department of Biokinesiology and Physical Therapy, University of Southern California, USA

Brian K. Schilling
✉ Director, Exercise Neuromechanics Laboratory, 171 Roane Fieldhouse, The University of Memphis, Memphis, TN, 38152, USA
Email: bschllng@memphis.edu
Publish Date
Received: 07-02-2008
Accepted: 28-04-2008
Published (online): 01-06-2008
 
 
ABSTRACT

The purpose of this brief review is to explain the mechanical relationship between impulse and momentum when resistance exercise is performed in a purposefully slow manner (PS). PS is recognized by ~10s concentric and ~4-10s eccentric actions. While several papers have reviewed the effects of PS, none has yet explained such resistance training in the context of the impulse-momentum relationship. A case study of normal versus PS back squats was also performed. An 85kg man performed both normal speed (3 sec eccentric action and maximal acceleration concentric action) and PS back squats over a several loads. Normal speed back squats produced both greater peak and mean propulsive forces than PS action when measured across all loads. However, TUT was greatly increased in the PS condition, with values fourfold greater than maximal acceleration repetitions. The data and explanation herein point to superior forces produced by the neuromuscular system via traditional speed training indicating a superior modality for inducing neuromuscular adaptation.

Key words: Impulse, momentum, purposefully slow, time-under-tension


           Key Points
  • As velocity approaches zero, propulsive force approaches zero, therefore slow moving objects only require force approximately equal to the weight of the resistance.
  • As mass is constant during resistance training, a greater impulse will result in a greater velocity.
  • The inferior propulsive forces accompanying purposefully slow training suggest other methods of resistance training have a greater potential for adaptation.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2024 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.